Tuesday, September 11, 2012

Is It Possible to Colonize Other Planets? : A List of Prerequisites for Exoplanetary Habitation

My other blogs are:
Supporting Life On Another Planet
Prerequisites of Life on Earth
and Other Planets

So...you've thought of it before, and you'll think about it again sometime soon, so I've chosen to write about what you were wondering: Is alien life even possible? Is there any intelligent life out there? Well, I suppose from certain perspectives, the fact that we exist is proof enough. Yet I'd argue with that, for given the marvelous demands of a planet to be livable are positively miraculous that we are here. Also worth noting is simply how people can expect intelligent life on planets to exist when astronomers and scientists have yet to discover any on earth? Har-har. Seriously though, you're all stooopid. That's why you're reading this article. And so, without further adieu, I've compiled a list of requirements for a planet to be able to host life here for you without any eye watering goodbyes to your fantasies of naked green women who want to know what love is. Also, at the end are my opinions since facts and belief are supposed to be separated. That is, after all, how we are taught in college. All tucked away in a neat little end of the page that can be easily ignored since you're not going to read them anyway unless you agree with me. But then again, what do I believe? Skip to the end and find out! And in case any of you just want a simple yes or no, is life on other planets possible, then no. It's an absolute resounding no. Furthermore, no. And then again, no. With terraforming? No. Still a resounding and absolute no. They couldn't even terraform in Star Trek. No.
The criteria below are listed in order of tremendous importance to basic needs, yet all are required. This is not a comprehensive list by any means. As far as I've seen, no such list exists because it'd be endless, spanning an endless sea of pages that no one would even want to read, and that few people would even understand due to the marvelous complexity of the demands for supporting even basic life, let alone humanoid life like humans. As much as astronomers and regular people hate to admit the obviously infinitesimal chances for life to sporadically form on a planet without God, they probably should, but hopefully this list will help them realize that thinking it isn't so doesn't make it so!-
I highly doubt you'll remain interested long enough to read through this whole article, so I'd like for you to simply jump to the very bottom of the page when your eyes begin to bleed for a more verbose explanation of this list, rather than bland facts you'll never remember. Keep in mind that we have yet to find a single planet that matches even 3 (THREE) of all of the below criteria, let alone all of them.
A Habitable Planet Requires:
(again, this is absolutely not a comprehensive list-- this is barely even a fraction of a fraction of what is required!!)
    • Star must have a stable habitable zone-- that is, a barrier around the star which allows a planet with sufficient atmospheric pressure within this barrier to form water (and thus, life). A planet must be close enough to benefit from this barrier but far enough away to be at a safe distance (around 93,000,000 miles average distance).
    • Proper "aging" orbit: Because many stars both move at hundreds of thousands of miles per hour (planets do not!) and because their luminosity increases as they age, these two prime factors must be taken into consideration as well when determining the eligibility of a star in a system to support life on a nearby planet and achieving a proper, lasting orbit. Assuming the planet is both capable of supporting water and any life at all (more below), it must have a proper orbit around its sun and properly drift away from the sun as it ages or else the habitable zone will become unstable. This eventual instability would mean that either all life on the planet would be destroyed or that life would be prevented from forming to begin with.
    • The sun itself must be a specific class of star and to be a stable sun range between early F, G (our Sun), to a mid-K type star. The star cannot be highly variable nor magnetically unstable. Others stars are either too dim and too cool (red dwarfs), or put out too much radiation and kinetic energies (such as a blue giant), which would also destroy life.
    • This "sun" must be a main-sequence sun that will remain stable for billions of years for evolution to take place (evolution means we all life originated from rocks...literally, read about it in full before you endorse it!)
    • Low stellar variation
    • High metallicity (star have a high metal content allows for better fusion, longer life, balanced and stable luminosity, and perhaps even a more stable habitable zone
This really puts things into perpective of the size of just our solar system!
Look at how small Earth is!!
    • Axial tilt of 23-24 degrees is necessary. This lets the weather be relatively stable and thus becomes a candidate for life. Notice the degree of tilt is only a 1 degree difference? This is because even a couple degrees of more or less tilt would dramatically change the weather patterns on the planet!
    • Composition of the planet surface must be similar, if not virtually identical, to earth.
    • Atmosphere must have a proper ratio of carbon, hydrogen, oxides (like oxygen gas and ozone), carbon oxides, and nitrogen gas, neon, krypton, and many more.
    • A molten iron planetary core; our planet would be harmed by the suns radioactive rays without an iron core to protect us.
    • According to evolutionary theory, the planet must be stable for at least 100 million years for life to form - most planets would not follow this. On the same token, evolutionary theory admits that while it might take 100,000,000 years for evolution to culminate into "us," it may have taken well over +4,000,000,000 years just for evolution to even begin. The planet then, might require as much as four billion years of stability to allow for human life to safely develop and flourish before planetary death.
    • This new "earth" must be the same size as earth. Planets too small and too large cannot support atmospheres, have far too strong of a gravitational pull, cannot support water formation or life, and often do not have iron cores.
    • A moon that is about 1/3 the size of the planet must be present and at the proper distance from the planet and the sun in order to regulate the planet's orbit around its sun.
    • This planet and its moon must both orbit the sun in a way that it can have a good path in order to properly ellipse around the sun.
    • Neither the moon nor the planet itself should be moving too fast or all life would die or fail to form. Furthermore, the moon and planet must maintain orbit around the star itself which may be moving in excesses of 3,000,000 mph!!! (Earth moves at  about 66,600 mph and the Sun moves at 150,000+ mph
    • Enough flat land for effective agriculture and various forms of plant and animal life, water, as well as separate areas for large bodies of water for sea life, continental drift, and tectonic activity.
    • Have steady but limited volcanic activity and volcanic hot zones, so the planet would not be a molten wasteland, and also so the core of the planet would remain stable (we've all heard of Krakatoa!)
    • Must have enough mass to create a gravitational field around the planet to "hold stuff down." Wouldn't wanna float away, now would ya?
    • That same gravitational field must be around 1g. Gravity that is even a little higher or lower than 1g would both kill many forms of basic and complex life and also prevent water from forming on the planet (hence, no life). 1g gravity is an absolute must.
    • The gravity must also surround the entire planet, as to hold onto an atmosphere over eons, but not so much that the atmosphere is too thick and therefore the surface pressure is too high
    • A molten iron core is necessary to create a global magnetic field to protect the planet from cosmic radiation, deadly cosmic rays and particles, and deadly atomic astronomical forces (atoms in space are highly volatile and far more dangerous than on earth).
    • gravity is around 1g-- gravity that is even a little higher or lower than this both kills many forms of basic and complex life and prevents water from forming (which means no life!)
    • More on the stable habitable zone: Earth is at the right distance from the Sun to have liquid water form on its surface and for the atmosphere to be at a reasonable temperature for life to occur. It also doesn't stray too far from this "optimal" distance from the sun, making the temperature stable. Unfortunately, any planetary to support carbon based life forms must be similar, if not identical. to earth.
Welcome home! Don't you recognize your own neighborhood? Galactic neighborhood, that is. Without the Milky Way, we'd all drift to destruction out in endless space.
    • No large stellar bodies may be present within or near the habitable zone, which means nothing too large can be near the planet or its moon at any point along its orbit around the sun. No planet, water, or life could form due to the planetary scale disruptions in gravitational forces from any large stellar object(s), even if the disruptions were relatively brief. This means that if Jupiter or Venus were our satellite instead of the moon, no life on earth would exist.
    • A solar system is required to counter balance the moon and "earth," or else the planets would sling shot into or away from the sun. Our solar system and all of its planets (and their satellites) seem to be required to preserve the "earth"
    • This new solar system hosting life on the new "earth" must belong to a galaxy and also to have proper distance from galactic core (like the milky way) to prevent the system itself from colliding with other systems or from drifting through endless space and into inevitable destructive forces (black holes, "super-stars" (like blue supergiants, magnetars, neutron stars, etc...) All stellar objects within the Milky Way are hanging on to each other by gravitational forces, preventing planets, stars, and systems from drifting away into space. (Of course, this is happening anyway as the universe expands and distances between stellar objects exponentially increase faster than the speed of light...read my article on Relativity and Universal Expansion for more information on this!)
Don't you want to know some of the facts about  our universe before you commit yourself to a scientific philosophy that denies you the God who is ***bigger*** than the universe? We have yet to find a single planet that matches even 3 (THREE) of all of the above criteria, let alone all of them, and this list is terribly far from being a comprehensive list also. We have yet to even understand how life is capable of being supported on earth, although we know a lot already, the list of requirements to sustain life on earth is truly endless. I encourage you all to believe whatever you want, but anyone who frequents my blogs has the chance to read from a new, unbiased perspective. Yes, I am unbiased. This is because although I give my Christian God a big thumbs up, I know that fudging the truth or bombarding people with controversial opinions is an ineffective way to communcate something as complicated as the human soul, creation, and God. None of these are easy subjects, but I hope you find my perspective refreshing. So I list the facts, and then I express how I feel at the end. Seems better that way. What would my reward in heaven be for lying anyway? (Yeah, nothing).
Astronomers tend to be atheist or agnostic (basically god is an uncaring blob who created earth in his boredom), and sadly, astronomers search for answers that satisfy their desire to deny Christ, and to promote a godless life. They live life in their heads and not their hearts, and have become calloused. When astronomers like Steven Hawking present the facts of our great universe, they do so in the context of evolution, the big bang, and either some form of atheism or various forms of agnosticism. They are hardly unbiased, since they cram these philosophies down everyone's throats so often that it's almost as if the philosophies themselves have become accepted simply because it's all anyone ever hears.
Lastly, if you're still resistant to the idea that life on earth is unique or that we're alone, please please please read my article called "Interplanetary and Interstellar Space Travel: Distances Between Exoplanets, Stars, and the Search for Alien Life", there's a huge chart showing the distances and unimaginable time it'd take to get to local stellar objects at various speeds (35,000 mph, 150,000 mph, 35,500,000 mph (5% light speed), light speed (~670,000,000 mph), and 999,999,999,999,999x 1c (~6.7×1023 mph...as a joke). If you ever thought that there was life on other planets, then you might want to damper your hopes of them ever visiting us or that we visit them. Just remember that science and faith do not conflict, it's the philosophies of this world that conflict with faith and even with science itself!
So here's another philosophy:

No comments:

Post a Comment